

Evaluation of a marine Oxygen carrier (HEMO₂life[®]) for organ preservation: first use in kidney transplantation in humans

Yannick Le Meur, Emmanuel Morellon, Marie Essig, Antoine Thierry, Matthias Buchler, Sophie Drouin, Charles Deruelle, Lionel Badet, Francis Pesteil, Pierre-Olivier Delpech, Jean-Marie Boutin, Benoit Barrou.

Brest, Lyon, Limoges, Poitiers, Tours, Paris La Pitié Salpétrière. FRANCE

BACKGROUND

Today, awaiting transplant surgery, kidney grafts are preserved at 4° C to reduce the enzymatic activity, either in static conditions or on a machine perfusion. Preservation solutions are aimed to reduce damages associated with ischemia/reperfusion injuries (IRIs). To date none of them really prevents injuries due to hypoxia and reoxygenation. These injuries have deleterious effects on long term graft survival.

The Medical Device HEMO₂life[®] is a natural extracellular hemoglobin (Hb) isolated from the marine lugworm *Arenicola marina*. This biopolymer of high molecular weight (~3,600 kDa) composed of 156 globin and 44 non-globin linker chains has a large oxygen binding capacity, carrying up to 156 oxygen molecules when saturated (in comparison to 4 for human Hb). It releases oxygen according to a simple gradient without requiring any allosteric effector.

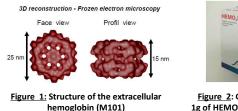


Figure 2: Glass vial containing 1g of HEMO,life[®] solution (20mL)

Figure 3: HEMO,life[®] once injected in a

preservation solution bag.

ed in a

HEMO₂life[®] CE mark on-going. This Medical Device is not yet commercialized.

OBJECTIVES

This is a multicenter safety study evaluating for the first time in humans the use of an oxygen carrier HEMO₂life[®] as an additive in organ preservation solution in kidney transplantation. The primary end point was a safety endpoint analyzed by collecting all events within the first 3 months in terms of HEMO₂life[®] adverse events, graft safety and recipient safety. Efficacy was evaluated as a secondary endpoint: comparison of both groups at 3 months and 1 year; comparison of HEMO₂life group[®] with an historical cohort and histological evaluation.

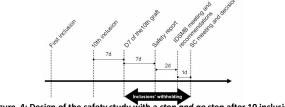
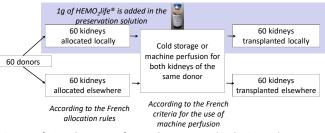



Figure 4: Design of the safety study with a stop and go step after 10 inclusions

METHODS

This was a national multicentric open-labeled safety study on a medical device. The study planed to include 60 grafts from deceased donors after brain death, retrieved and transplanted locally within the 6 participating centers.

<u>Organ perfusion:</u> The same perfusion solution was used in the 6 transplant centers: the Cold Storage Solution Belzer UW $^{\circ}$.

<u>HEMO₂life[®] use:</u> For cold storage, the kidney was perfused on the backtable and transferred to the storage container with a solution of Belzer UW [®] + HEMO₂life[®] (1g per liter). For machine-perfused grafts, 1g HEMO₂life[®] was added to 1 liter of Machine Perfusion Solution Belzer UW[®].

RESULTS: donors and recipients

As no issue appeared in the *stop and go* phase, 60 graft kidneys from 60 deceased donors were preserved in a solution containing HEMO₂life[®]. Among them, 2 kidney grafts were not transplanted due to macroscopic lesions of the graft and surgeon decision.

	Donors n= 58	Recipients n=58
Age, years (median +/- SD)	50.34 +/- 16.09	51.64 +/- 13.6
Male, %	30 (51.7)	39 (67.2)
ECD donors, %	23 (38)	
Use of machine perfusion, %	21 (36.84)	
Preemptive transplantation, %		7 (12.1)

RESULTS: 3-month safety

RESULT 1: According to the IDSMB conclusions it was confirmed that the use of HEMO, life[®] in preservation solution is safe for the patient and for the graft.

- ·		•
	Recipients (57)]
Death	0	Not related to the
Graft loss	2	← product (IDSMB)
DGF (= at least one HD session) (%)	14 (24.1)	▶ Not superior than an
Acute rejection, %	2 (3.4)	 historical population
		6 I A I C II II

At 3-month, 25 SAE were reported including: 2 graft losses, 4 infections (2 pyelonephritis, 1 orchitis, 1 klebsellia sepsis), 2 acute rejections, 4 cardiac events , 11 various graft complications.

RESULTS: 3-month efficacy

For the efficacy secondary end points we performed a paired analysis comparing the grafts receiving HEMO₂life[®] and their contralateral kidney after exclusion of the pairs with at least one recipient being transplanted preemptively. Patient and graft survival were comparable in the 2 groups.

	HEMO ₂ life [®] n= 43	Contralateral n=43
Age, years (mean +/- SD)	51.32 +/- 13.49	49.54 +/- 12.89
Male (%)	38 (66.67)	33 (57.89)
Use of machine perfusion (%)	21 (36.84)	20 (35.09)
Cold ischemia time (min)	741 +/- 260	1054 +/- 349

RESULT 2: The HEMO₂life^{\circ} group presented less delayed graft function than the contralateral group.

	HEMO ₂ life®	EMO_life [®] n= 43	contralat	teral n=43	n
	6,98 %				
<u>Figure 5</u> : DGF = n HemoDialysis se: 1 st week post tra	ssion within the			p = 0,03	85
	0.1.1	26,	19 %		

	HEMO ₂ life [®] n= 43	Contralateral n=43	р
DGF: at least one HD session (%)	10 (23.26)	14 (32.56)	0,4544

RESULT 3: Recovery of renal function in the first month was better in the HEMO₂life[®] group as compared with the contralateral kidneys.

	HEMO ₂ life [®] n= 43	Contralateral n=43	р
Days for creatinine < 250 µmol	6.93 +/- 9.16	13.17 +/- 13.83	0.0208
AUC of creatinine D1 to D7	1709+/- 873	2717+/- 1878	0.042

In the univariate analysis, cold ischemia time and patient group ($HEMO_2$ life[®] versus contralateral) were significantly related to DGF and renal function. This effect disappeared for both variables in the multivariate analysis.

Further analysis are still on going: 1-year follow-up, comparison of $\mathsf{HEMO}_2\mathsf{life}^{\circledast}$ group vs historical cohort, histological evaluation.

CONCLUSIONS

The 3-month analysis of the study showed that the safety primary end point was met. Even if the study was not designed to show superiority of $HEMO_2 life^{\circ}$ the secondary efficacy end points were all in favor (delayed graft function and renal function) of the $HEMO_2 life^{\circ}$ group when compared with the contralateral group.

In this context, the next step will be to design a prospective randomized study evaluating the efficacy of HEMO₂life[®] in a larger cohort of patients.